Large scattered data interpolation with radial basis functions and space subdivision

نویسندگان

  • Michal Smolik
  • Václav Skala
چکیده

We propose a new approach for the radial basis function (RBF) interpolation of large scattered data sets. It uses the space subdivision technique into independent cells allowing processing of large data sets with low memory requirements and offering high computation speed, together with the possibility of parallel processing as each cell can be processed independently. The proposed RBF interpolation was tested on both synthetic and real data sets. It proved its simplicity, robustness and the ability to handle large data sets together with significant speed-up. In the case of parallel processing, speed-up was experimentally proved when 2 and 4 threads were used.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scattered data approximation of fully fuzzy data by quasi-interpolation

Fuzzy quasi-interpolations help to reduce the complexity of solving a linear system of equations compared with fuzzy interpolations. Almost all fuzzy quasi-interpolations are focused on the form of $widetilde{f}^{*}:mathbb{R}rightarrow F(mathbb{R})$ or $widetilde{f}^{*}:F(mathbb{R})rightarrow mathbb{R}$.  In this paper, we intend to offer a novel fuzzy radial basis function by the concept of so...

متن کامل

Adopting the Multiresolution Wavelet Analysis in Radial Basis Functions to Solve the Perona-Malik Equation

Wavelets and radial basis functions (RBF) have ubiquitously proved very successful to solve different forms of partial differential equations (PDE) using shifted basis functions, and as with the other meshless methods, they have been extensively used in scattered data interpolation. The current paper proposes a framework that successfully reconciles RBF and adaptive wavelet method to solve the ...

متن کامل

Interpolation by Radial Basis Functions on Sobolev Space

Interpolation by translates of suitable radial basis functions is an important approach towards solving the scattered data problem. However, for a large class of smooth basis functions (including multiquadrics f(x)=(|x|+l), m > d/2, 2m−d ̈ 2Z), the existing theories guarantee the interpolant to approximate well only for a very small class of very smooth approximands. The approximands f need to b...

متن کامل

Thinning and Approximation of Large Sets of Scattered Data

Having various concrete industrial applications in mind we focus on surface fitting to large scattered data sets. We describe a general method for modelling data which incorporates both filtering using triangulations, and hierarchical interpolation based on compactly supported radial basis functions. The uniformity of the data points plays a significant role. The utility of the method is confir...

متن کامل

Scattered Data Modelling Using Radial Basis Functions

Radial basis functions are traditional and powerful tools for multivariate interpolation from scattered data. This self-contained talk surveys both theoretical and practical aspects of scattered data fitting by radial basis functions. To this end, basic features of the radial basis function interpolation scheme are first reviewed, such as well-posedness, numerical stability and approximation or...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Integrated Computer-Aided Engineering

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2018